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UK 
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Abstract. The non-relativistic theory of the Lorentz gauge is developed for the region of 
a perfectly conducting surface using the Gupta-Bleuler indefinite metric and a non- 
orthogonal set of basis vectors. The Lorentz gauge is transformed into the Coulomb gauge 
by unitary transformation and in so doing expressions are obtained for the Coulomb energy 
and its special case the image force. The two non-physical photons of the Lorentz gauge 
are found to exist also in the Coulomb gauge. 

1. Introduction 

The Coulomb gauge is very different to the Lorentz gauge. It is not at first sight Lorentz 
invariant, it is a non-local gauge involving the strange Coulomb force acting instan- 
taneously across space and it normally has but two quantised photon fields instead of 
the four of the Lorentz gauge. Nevertheless it is possible to transform the Lorentz 
gauge into the Coulomb gauge by a unitary transformation and thus to demonstrate 
the equivalence of the underlying theories. In the present paper this transformation is 
performed for a half-space bounded on one side by a plane perfectly conducting 
surface. In so doing, an expression for the classical image force is obtained purely 
from quantum mechanical considerations, thus dispelling the ambiguity with which it 
has previously been surrounded. 

The Lorentz gauge has not often been employed in the theory of conducting surfaces 
because of its extra complexity; however, Babiker (1982) has introduced this gauge to 
the field in a non-relativistic form that he hoped might be useful in cases where the 
Coulomb gauge is problematical due to difficulties over the Coulomb terms in the 
Hamiltonian. Babiker used the Lorentz gauge to obtain an expression for the image 
force but by the use of a perturbation method only. 

The modern theory of the Lorentz gauge is the Gupta-Bleuler theory (Gupta 1950, 
Bleuler 1950). The state space in this theory is defined on an indefinite metric, the 
Gupta-Bleuler metric (a good introduction to the theory of metrics is given by Pandit 
(1959)). The Gupta-Bleuler metric is not to be confused with the Minkowski metric 
of relativity-although the two metrics are not independent. Use of the indefinite 
metric allows the four components of the vector potential to be quantised symmetrically, 
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thus there are four independent photon fields in this theory, two that correspond to 
the classical transverse modes and two additional virtual fields without direct physical 
existence. All Coulomb interactions in the Lorentz gauge occur through the medium 
of these virtual fields, which act as exchange particles. The Coulomb gauge differs 
from the Lorentz gauge in that only the two transverse modes are normally quantised. 
The time component of the vector potential, the electrostatic potential, remains unquan- 
tised, governed as in the classical theory by the Poisson equation. Coulomb interactions 
arise by quite different mechanisms in the two gauges. There are normally no virtual 
fields in the Coulomb gauge and Coulomb interactions arise instead through the 
electrostatic potential via a special term in the Hamiltonian, the Coulomb term. The 
Coulomb term must be determined for each new situation through a solution of the 
Poisson equation, and it is this that causes trouble with conducting surfaces, particularly 
of electronically dense materials. 

The equivalent of the classical gauge transformation in the quantum theory takes 
the form of a unitary transformation. Babiker and Loudon (1983) discuss this 
equivalence, performing a particular transformation by both the classical and quantum 
mechanical methods and comparing the results. They also show that a further method, 
that of adding a total time derivative to the Lagrangian, is the equivalent of the other 
two. 

The transformation from the Lorentz to the Coulomb gauge has been carried out 
by various authors employing various methods, although prior to the present work it 
does not seem to have been performed by unitary transformation in a non-relativistic 
form or to have been performed at all for the presence of a conducting surface. 

Babiker and Loudon perform the transformation formulated as a gauge change in 
the classical theory. Heitler (1954) also performs the transformation using the classical 
theory, but formulated in the language of a canonical transformation. Sometimes the 
transformation is referred to as the elimination of the longitudinal field; for instance 
by Schwinger (1948) using a quantum mechanical method but writing prior to Gupta’s 
formulation of the Lorentz gauge. The unitary transformation has been performed in 
relativistic formulation by Bleuler (1950) in the paper which contributed to the Gupta- 
Bleuler method, and more recently by Durr and Rudolph (1969) using the ghost-state 
formulation employed in the present paper. The transformation from the Lorentz to 
the Coulomb gauge is a transformation from a local to a non-local theory; this situation 
is discussed by Ascoli and Minardi (1958). 

The first part of the present work is occupied in developing the formalism of the 
Lorentz gauge as it pertains to a half-space. A non-relativistic theory is employed for 
the motion of massive particles, although the electromagnetic field is treated relativisti- 
cally with the full second-quantised approach. A non-orthogonal set of basis vectors 
is used in the description of the electromagnetic field, employing two zero-norm ghost 
states. A more complete account of the present work, and in particular of the Gupta 
theory, is given by Hart (1985). 

Relativistic notation is employed throughout, such that the arbitrary 4-vector f ”  is 
expressed in the form f ”  = ( f ” , f )  = ( f ” ,  $,, fl), where 4, and f l  are the components 
of f  @ parallel and perpendicular, respectively, to the surface*of the mirror and 4, is a 
two-dimensional vector. The vector f ”  is also used, where f ”  = (f’,A,, -fi). 

The summation convention will be assumed, unless otherwise stated, such that 
repeated roman indices take the values 1, 2, 3 and repeated greek indices the values 
0, 1, 2,3. A perfectly conducting mirror surface is assumed to pass through the origin, 
with axes oriented such that the perpendicular to the surface of the mirror is parallel 
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to the axis carrying the label 3 with the positive section in the empty half-space, so 
that fi = f 3 .  

Contravariant and covariant quantities are distinguished by raising and lowering 
the indices, and are related through the metric tensor, g’” ( -  + + +), such that 
f” = gp”fv .  The contravariant set is the set directly comparable to the set of non- 
relativistic quantities; for example, time is given by t = xo and the derivative a”= 
aflax, = -af /at .  

Whenever there could be confusion an index without Lorentz significance is placed 
in brackets, thus T‘”’. These indices are merely labels and their location in the raised 
or lowered position is without significance. The summation convention does not apply 
to indices in brackets. 

The Dirac delta function and the Kronecker delta take the notations S(f) and S,, 
respectively. 

Heaviside units are employed throughout with the speed of light and Planck’s 
constant equal to unity. 

2. The Lorentz gauge in the half-space 

The usual non-relativistic Hamiltonian can be employed without change in the half- 
space: 

where 

Hd = qAo( r )  ( I d )  

with A@ the 4-vector potential, N””( k )  the number operator corresponding to mode 
v of the photon field, and r” and p = -iV, the position vector and momentum operator, 
respectively, of a particle of charge q and mass m in interaction with the field. The 
subscript o f f  on the integral sign denotes a definite integral over a half-space on the 
positive axis. The wavevector k’ fulfils an identical role to the corresponding wavevec- 
tor in the full-space, its time component having the same free-field value, w = Ikl, its 
perpendicular component, however, not taking negative values, k ,  3 0. 

The substance of the conductor is assumed to perfectly exclude all electric and 
magnetic fields, leading to boundary conditions on its surface in the form 

a2Ao = aoA2 a’A2 = a2A’. (2) alAo = $A1 

These conditions do not necessarily require the vector potential also to vanish inside 
the mirror, and, strictly speaking, it probably ought not to. It is, however, a worthwhile 
simplification for the present purposes to assume that it does. 

It is convenient to define a function T‘” such that 

~ ‘ ” ( u )  = ~ “ ’ ( u )  = ~ ” ’ ( u )  = i sin(u) T‘3’( U )  = cos( U )  (3) 
and a step function e(x,) which takes unit value for x L 2 O  but vanishes elsewhere. 
Then a convenient decomposition of the vector potential that satisfies the boundary 
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conditions (see Barton (1974) for a similar decomposition in the Coulomb gauge) 
becomes 

A,(x)  = O(x,) d3k M ( k ) u g ( k )  exp(ikll xII -iwt)T‘CL’(k,x,)+adjoint (4) J: 
where u p ( k )  and u ” ’ ( k )  are the annihilation operators of the photon field and their 
adjoints, the adjoint being with respect to the Gupta-Bleuler metric rather than the 
usual Hermitian conjugate. The normalisation factor M (  k )  is conveniently chosen 
such that M ( k )  = ( 4 ~ ~ w ) - ” ~ .  

The photon operators up“( )  and u”(k )  are both 4-vectors, and this must be taken 
into account when it is necessary to ensure relativistic invariance. In particular, the 
commutation relations of these operators become 

[ a @ ( k ) ,  ~ ” ( k ’ ) ]  =0= [ a p t ( k ) ,  ~ ” ‘ ( k ’ ) ]  

[ ~ ” ( k ) ,  U”’ (  k ’ ) ]  = g p ” 6 ( k  - k ’ )  
( 5 a )  

(5b) 
and the photon number operators 

N ‘ ” ’ ( k ) =  ~ ” ‘ ( k ) ~ ~ ( k ) = ~ ( ” ) ~ ” ~ ( k ) ~ ” ( k )  not summed over v ( 6 )  

where 6‘”’ = * 1 is a parameter taking a negative value for the time-like mode, 6“’ = - 1, 
and being otherwise positive. 

The occurrence of the factors g*” and 5‘”’ is ultimately the reason behind the use 
of the indefinite metric, for it is easily seen that equations ( 5 )  and ( 6 )  lead to a state 
space in which the time-like photon can have a negative norm: 

(7) 
where the state In(”)) is an eigenstate of N‘”’ with eigenvalue n‘”’, such that 

(8) 
with the state 10) representing the photon vacuum. The round bracket symbols are 
employed instead of the more usual Dirac bras and kets in order to emphasise the use 
of an indefinite metric. 

With an indefinite metric, expectation values of the number operators, and therefore 
of the Hamiltonian, may be negative even though their eigenvalues are positive, thus 
raising the possibility of negative energies. Gupta (1950), however, was able to use 
the Lorentz condition in a special form, the Gupta condition, to prevent the occurrence 
of negative energy states in the physical domain. The Gupta condition as derived for 
a full-space, however, is not applicable to the half-space and must be derived anew 
from the Lorentz condition. 

The classical Lorentz condition, P A ,  = 0, cannot be applied to the quantum 
operators directly because to do so would mean equating operators that obey different 
commutation rules. The alternative is to apply the condition only to the expectation 
values: 

( n ‘ ” ’ l n ‘ ” ’ )  = (~ ‘ ” ’ ) ” ( ” ’  

I n ( ” ’ )  = ( n ( u ’ ! ) - 1 / 2 ( ~ ( ” ’ u u t ) n ( ” ) [ o )  

#”’physicallA,(x)lphysical) = 0 (9) 

X-(x)/physical) = 0 (10) 

where [physical) is any physically observable state. Then, because the vector potential 
is self-adjoint, equation (9) is equivalent to 

where x-  = d’Ai with A i  the part of A, containing only annihilation operators. 
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Equation (10) is the celebrated Gupta condition. It is not a condition on the 
operators but rather on the state vectors. This creates a situation quite different from 
the classical one. In the classical theory the imposition of the Lorentz condition, by 
setting an initial condition, removes a degree of freedom from the fields; no freedom 
is removed in the Gupta theory, however, but instead the set of state vectors is divided 
into two subsets-those that obey the condition, and those that do not. It is basic to 
the Gupta theory that only the former represent states directly detectable by physical 
measurement; states that do not obey the condition are to be considered virtual, with 
no direct physical effect. 

In the presence of electric charge the 4-divergence 8’A; cannot be evaluated directly 
and it is necessary to use the relationship d/dt  A’- = i[H, A’-], with H and A’ from 
equations ( 1 )  and (4). Employing the commutation relations, equations (5 ) ,  then leads 
to 

[k’a,(k)-iqO(r,)M(k) exp(-ikll rll) sin (k,r,)]lphysical) = O  ( 1 1 )  
where a term involving a delta function at the mirror surface has been ignored (this 
term can be removed by postulating a certain non-zero vector potential inside the 
mirror). Equation ( 1  1 )  is the Gupta condition for the half-space; it is comparable with 
the result for the full-space first obtained by Bleuler (1950). 

In the absence of electric charge the Gupta condition becomes more simply 

k’u, (k)lphysical) = 0 (12) 
which is identical to the corresponding full-space result. 

2.1. The choice of basis 

The basis can be generalised by writing 

a’ (k )  =I &’( ‘ ) (k )a ( ’ ) (k )  (13) 
A 

where the &’(’ ) (k)  are a set of polarisation vectors and A is a mode label. 
The traditional choice of basis insists on orthogonality, expressed by 

(14) 
then sets k’&:)( k )  = k ’ ~ F ’ ( k )  = 0. This basis is then a generalisation of the classical 
transverse modes, A = 1 and 2, the longitudinal mode, A = 3, and the scalar mode, 
A = 0. The transverse modes satisfy the free-field Gupta condition, equation (12), as 
operators, even though the condition is normally stated to be a condition on the state 
vectors only. Thus equation (12) can be written: 

(15 )  
This implies that in the absence of electric charge both longitudinal and scalar modes 
can appear in physical states, but only in pairs, one of each. 

Equation ( 1  5 )  suggests a possible replacement of the longitudinal and scalar modes 
by two new modes, defined such that 

& ” ( A ) ( k ) & E ’ ) ( k )  = g ( A ) ( A ’ )  

[ a ( 3 ) (  k )  - a(’)( k)]lphysical) = 0. 

a y k )  = 2 - 1 / ~ [ ~ ( 3 ) ( k )  + a ( o y k ) ~  
ab( k )  = 2-”2[ a ( 3 ) (  k )  - a‘” (k ) ]  

( 1 6 ~ )  

(16b) 
as first done by Durr and Rudolph (1969). The basis is then composed of the two 
transverse modes, as before, plus the good ghost, labelled g, and the bad ghost, labelled 
b. It is then possible to write 

A’(x) = A * T r ( ~ ) + A ’ g ( ~ ) + A ’ b ( ~ )  (17) 
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where ApTr is the part of A'" containing the transverse mode operators, Awg contains 
ag and agt, and A"' likewise contains ab and abt; such that, for instance, 

A p b ( x )  = e(x,) d3kM(k)cpb(k)ab(k)  exp(ikll * x,,-iwt)T""'(k,x,)+adjoint. (18)  

It is then useful to define a symbol T designating any one of the basis, transverse or 
good or bad ghosts; and to define the creation operators Cr(') such that for the 
transverse states 

5: 
Cr ' ' ) (k)  = a'"+ ( k )  Cr'"( k )  = k )  (19a) 

but for the ghost states the labels are reversed 

Crg(k)  = ab t (k )  Crb(k)  = a g t ( k ) .  

The commutation rules then become 

[ dT)(  k ) ,  a ( T ' ) (  k ' ) ]  = 0 = [ CrlT)( k ) ,  Cr"''( k ' ) ]  

[a"'( k ) ,  Cr""( k')] = ST,.6(k - k ' )  

and the number operators 

N'"(k)  = C r ( T ) ( k ) a ( T ) ( k )  not summed over T. (21) 

If now Cd'' is interpreted as the creation operator corresponding to a ( ' )  then relation- 
ships (20) and (21) take the standard boson form without the factors gp'" or ['"' 
interfering. 

Such are the intricacies of an indefinite metric that the creation and annihilation 
operators of the ghost states are not mutually adjoint. The creation operator of the 
good-ghost state is the adjoint of the bad-ghost annihilation operator, and vice versa, 
equation (19b). Thus 

lg) = CrglO) = abt(0) 

(81 = (OICrgt = (0lab 

Ib) = CrblO) = agtlO) 

(b( = (OICrbt = (O(ag. 

(22a) 

(226) 

with adjoints 

The confusing nomenclature is clarified by consideration of the annihilation function 
of the operators; thus when acting to the left ab+ annihilates a bad ghost, (blab+ = (01, 
although a good ghost is created when it acts to the right. 

Using the commutation relations it is found that 

showing that the ghost states are of zero norm and not mutually orthogonal. 
It will be of use later to note that just as with an orthogonal basis, for an arbitrary 

state vector Im) there is one and only one vector [ A )  such that (Alm) = 1. However, 
unlike the orthogonal case, [ A )  is not equal to (m) but has the ghost-state occupation 
numbers reversed: 

f i g =  nb f i b =  ng (24) 
fiTr - nTr - 

where the n' and fi' refer to the occupation numbers of the states (m) and IA), 
respectively. 
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2.2. The physical state space 

Written in terms of the ghost-state operators the Gupta condition, equation ( I I ) ,  
becomes 

(25) 

in which the bad-ghost annihilation operator is the only photon operator to appear. 
Thus the bad ghost is prohibited absolutely from entering physical states except in 
certain close associations with electric charge. 

The good ghost is not restricted from entering physical states by the Gupta condition 
but is nonetheless never observed directly as a free excitation. The reason for this 
becomes clear when the expectation value of the vector potential is considered in a 
state of the form l a )  = 10) + Ig); then it is found that the effect of the good ghost is 
merely to add a 4-divergence to the expectation value (ignoring a delta function at the 
surface). Thus the addition of a good ghost is equivalent to a gauge change of the 
classical theory, and hence is as undetectable as the gauge change itself. (See also 
Itzykson and Zuber (1980).) 

[ a b ( k )  - iqB(r i ) (M(k)/wJ2)  exp(-ikll * ril)  sin(k,rJ]lphysical) = 0 

3. The transformation and the image potential 

The Lorentz gauge is manifestly Lorentz invariant but the Coulomb gauge is not, hence 
in transforming from one to the other it is necessary to fix the Lorentz frame. The 
required frame is that in which the transverse and longitudinal modes have no time-like 
component and the scalar mode no space-like components. In this special frame the 
generalised transverse, longitudinal and scalar modes become equivalent to the corre- 
sponding classical modes, and the polarisation vectors of the ghost states become 

s”(k)  = k” /wJ2  E”(k) = tP’/wJ2 

where, as defined previously, k’ = (w,  k , , ,  -k_).  

operator Q and a state vector / a )  are transformed according to 
A unitary transformation U is employed, taking the usual form in which an arbitrary 

la)’= UIa)  Q’ = UQU-‘ 

A unitary transformation is a non-singular transformation that leaves the metric intact: 
(U41 U $ )  = (4l$). This definition is as valid when used with an indefinite metric as 
with any other non-degenerate metric. Unitarity with respect to an indefinite metric 
is merely a straightforward generalisation of ordinary unitarity, it is in no sense a false 
unitarity, even though the term pseudo-unitarity is often applied to it. 

A unitary operator can be put in the form U = e-“ where U is a self-adjoint operator. 
In the present case a suitable form for U is found to be 

U =  q d 3 k D ( k ) a g ( k )  exp(ikll - rll)  sin(k,r,)+adjoint (28) 

in which D ( k )  = M ( k ) / w J Z .  It is evident in a general way that U is a clothing 
operator, since it links the particle position operator r’ with the ghost-state operators. 
An equivalent operator constructed for the relativistic theory of the full-space is given 
by Durr and Rudolph (1969). 
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The transformation is applied to the various component parts of the Hamiltonian 
in turn, using the Schrodinger picture. It is first noticed that a" ' ,  a'" and ag  commute 
with a and thus transform into themselves. On the other hand, using the commutation 
relations (20) and performing the integral, gives 

[a, ab(  k ) ]  = -qD( k )  exp(ikl, r , , )  sin( k A r L ) .  (29) 

This commutator itself commutes with a and hence, using a well known formula, 

ab ' (k)  = e-'"ab(k) e'" 

= ab( k )  + iqD( k )  exp(-iki1 rll) sin( kLrL) .  (30) 

From equation (25) it is then immediately apparent that the Gupta condition in the 
transformed theory is simply 

ablphysical)' = 0 (31) 

valid now whether or not charged particles are present. 

The momentum operator, however, does not: 
The particle position vector rcL commutes with U and thus transforms into itself. 

p '  = -ie-'"V,(e'") = p + V,U (32) 

using the fact that V,a commutes with U. Differentiating a and expressing the result 
in the special frame of equations (26) gives for rl > 0 

p ' =  p + qAg( r )  (33) 

where A g  is the 3-vector part of the good-ghost vector potential of equation (17). 

theory between the ghost states and electric charge. 

(30) into equation (21): 

Equations (30) and (33) show how intimate is the relationship in the transformed 

The number operators are easily transformed by simple substitution of equation 

Ng' = N g  - iqD( k ) a g (  k )  exp(iki1 * rll) sin( kLrL)  

N' = N' + iqD( k)ag+(  k )  exp( -ikll * rli) sin( k l r L )  

(34a 1 
(34b) 

whilst the number operators of the transverse states transform into themselves. 

equations (26) leads to 
The use of equations (34) in equation (16) gives HAeldr and then employing 

H l i e l d  = Hfield- qAoB(r). (35) 

It remains to transform the vector potential itself, however, only the part A@', 
equation (18), needs much consideration as the transverse and good-ghost parts 
commute with a and hence transform into themselves. The space-like components of 
A@' also transform into themselves as is seen on using equations (30) and (26), and 
considering symmetry about the normal to the mirror surface. 

The time component behaves differently. It occurs in the Hamiltonian only in the 
term Hb of equation (Id) .  This is the term that leads to the Coulomb-energy term 
under the transformation; however, to see this most clearly it is necessary to generalise 
to the case where more than one particle is in interaction with the field. Then H4 
becomes 

= c stA0(rJ (36)  
I 
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where rf is the position vector of particle i with charge qi.  Correspondingly, equation 
(30) becomes 

ab'( k )  = ab( k )  + i qjD( k )  exp( -ikll rllj) sin( klrL,).  ( 37 )  
j 

Putting these equations together and transforming to the special frame of equations 
(26) gives 

where 

Expressing the sine functions in terms of exponentials, changing the limits of integration 
and rearranging, leads to 

I(rz, r,) '5 
1 

d'k y{exp[ik - ( rl - r , ) ]  - exp[ik * ( r, - 6 )]} (40) 

where i =  ( 2 ,  r l i ,  -r,), as defined previously. Then changing to polar coordinates, 
simplifying and making use of the tabulated integrals of Abramowitz and Stegun 
(1964), eventually gives 

' I  ful\-space k 

Hk = Hd, + HCh + H i m a g e  (41a) 

where 

and 

The term H C b  is the ordinary Coulomb energy of a system of charges expressed in 
Heaviside units. The factor relates to the double appearance of each pair of charges 
in the sum over pairs. The other term, Himage, is identical apart from the changes in 
sign of two quantities, q, and ri,. This term is the classical image charge term, 
representing the energy of interaction of each charge with a set of image charges. 

The image energy of a single charge is simply given by one of the terms of Himage 
in which i = j :  

This result is identical to the famous classical result. 
The complete Hamiltonian becomes 

+ q(AoTr(r)+Aob(r))+ HCb+ Himage 

where Hfield has been split into its transverse and ghost components. 
(43) 
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4. Ghost states in the Coulomb gauge 

The transformed Hamiltonian of equation ( 4 3 )  should be compared with the Coulomb- 
gauge Hamiltonian as it normally appears 

The two Hamiltonians are very nearly the same, but not quite, since H ‘  contains terms 
not appearing in Hcoulomb. These terms are first the free-field terms Hield and Hkeld 
which might have been expected not to vanish in the transformation. Second, however, 
there are the ghost terms A b  and A”” appearing in H ’  which would seem to prevent 
the ghost states decoupling. However, a Hamiltonian without these terms does not 
seem to be derivable by unitary transformation without at the same time losing the 
Coulomb terms. It seems that the transformed theory is a version of the Coulomb 
gauge in which two virtual photons exist. Neither ghost state is directly detectable by 
physical measurement in the Coulomb gauge any more than it would be in the Lorentz 
gauge, and for the same reasons; in fact the Gupta condition in the transformed theory 
is stronger than that in the Lorentz gauge as it prohibits entry of the bad ghost to 
physical states whether or not electric charge is present. The ghosts d o  have an effect 
on the theory of the Coulomb gauge for they clearly add a component to the zero-point 
energy. However the presence of ghost states does not alter any other energy level of 
the system away from what would be expected in the usual formulation of the Coulomb 
gauge and it is the purpose of the next section to prove this. It is not clear at present 
whether or not the ghosts are in other respects completely decoupled, although there 
is no reason to assume that they are not; a proof might be constructed along the lines 
employed in 0 4.1 generalised to the expectation values of operators other than the 
Hamiltonian. 

4.1. Proof that the ghost states have no effect on energy levels 

That the energy levels of the transformed system are identical to those of the Coulomb 
gauge can be shown using an  expansion of perturbation theory type. The transformed 
Hamiltonian H’ can be put in the form 

H’= Ho+ V ( 4 5 a )  

Ho = H C o u l o m b +  ~ g f i e l d  + H L i d  

where 

(456)  

and 

1 
2 m  

V = -{q2Ab( r )  * Ab( r )  - q [ p  - Ab( t) + A b (  r )  * p ]  + 2q2ATr( r )  - Ab( r)} + qAob( r )  

( 45c )  

with Ho identical to the standard Coulomb-gauge Hamiltonian apart from the addition 
of the free-field ghost terms. If now ICb) represents the eigenstates of the standard 
Coulomb-gauge Hamiltonian then the eigenstates of Ho must take the form / i o ) =  
Ing, nb)lCb), in which / C b )  represents a coupled system of electron wavefunction and  
transverse states but is not coupled to the ghost states. 
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Proceeding as usual in time-independent perturbation theory, it is assumed that 
the true eigenstates li) and eigenvalues E, of H ’  can be expanded as power series in 
a perturbation parameter A such that 

l i)=(i ,)+Alil)+A’Iiz)+ . . .  E, = E,+AE,,+A’E,,+ . . . 

where 

[ H , + A V ] / i )  = E , ( i )  H o b o )  = E&J. 

Adapting the normal methods of perturbation theory to the needs of the indefinite 
metric gives to first order 

where states such as 1 p) and / i )  are related through equations (24). Then to nth order 
where n 5 2 

where the sum over r in equation (47a) always has at least one term, even if n = 2 .  
The perturbation V contains the ghost-state operators in the combinations: ab, Crb, 

abab ,  CreCrg and Crgab.  Inserting these combinations of operators into equation (46a) 
it is found that the only action of the perturbation to first order when / io)  represents 
a physical state ( nb  = 0 )  is to add linear combinations of terms in which good ghosts 
are present but bad ghosts are not. Thus the perturbation does not transform a physical 
state out of the set of physical states. From equation (466) it is determined in a similar 
manner that the energy eigenvalue of a physical state, and hence the expectation value, 
remains unaltered to first order under the action of the perturbation. 

The process can be repeated to arbitrary order by induction. Firstly it is assumed 
that for some order n, where n 2 2 ,  that is a physical state, and that E+ = 0 for 
all r < n. Then using equation (47b) it is found in a similar manner to the above that 
E,“ = 0, and hence the second term on the right-hand side of equation (47a) vanishes. 
From the resulting equation it is found that if \ i n - , )  is a physical state then li,) is also 
such a state. Thus if the assumptions hold to order n - 1 they also hold to order n, 
and since it has been shown that they hold to first order the usual process establishes 
that they hold to all orders. Thus the expectation values of the transformed Hamiltonian 
in physical states are not altered by interactions with the ghost states, and hence are 
identical to those that would be obtained from the Coulomb-gauge Hamiltonian in its 
more usual form. This constitutes the proof required. 
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